DocsPrompt ManagementExample Langchain (JS)
This is a Jupyter notebook

Example: Langfuse Prompt Management with Langchain (JS)

Langfuse Prompt Management helps to version control and manage prompts collaboratively in one place.

This example demonstrates how to use Langfuse Prompt Management together with Langchain JS.

const langfuseParams = {
    publicKey: "",
    secretKey: "",
    baseUrl: "https://cloud.langfuse.com",
    flushAt: 1 // cookbook-only, send all events immediately
}
import { Langfuse } from "npm:langfuse"
const langfuse = new Langfuse(langfuseParams)

Simple example

Add new prompt

We add the prompt used in this example via the SDK. Alternatively, you can also edit and version the prompt in the Langfuse UI.

  • Name that identifies the prompt in Langfuse Prompt Management
  • Prompt with topic variable
  • Config including modelName, temperature
  • labels to include production to immediately use prompt as the default

For the sake of this notebook, we will add the prompt in Langfuse and use it right away. Usually, you’d update the prompt from time to time in Langfuse and your application fetches the current production version.

const prompt =  await langfuse.createPrompt({
    name: "jokes",
    prompt: "Tell me a joke about {{topic}}",
    config: {
      modelName: "gpt-4",
      temperature: 1,
    }, // optionally, add configs (e.g. model parameters or model tools)
    labels: ["production"] // directly promote to production
});

Prompt in Langfuse

Prompt in Langfuse

Run example

Get current prompt version from Langfuse

const prompt = await langfuse.getPrompt("jokes")

The prompt includes the prompt string

prompt.prompt
"Tell me a joke about {{topic}}"

and the config object

prompt.config
{ modelName: [32m"gpt-4", temperature: 1 }

Transform prompt into Langchain PromptTemplate

Use the utility method .getLangchainPrompt() to transform the Langfuse prompt into a string that can be used in Langchain.

Context: Langfuse declares input variables in prompt templates using double brackets ({{input variable}}). Langchain uses single brackets for declaring input variables in PromptTemplates ({input variable}). The utility method .getLangchainPrompt() replaces the double brackets with single brackets.

Also, pass the Langfuse prompt as metadata to the PromptTemplate to automatically link generations that use the prompt.

import { PromptTemplate } from "npm:@langchain/core/prompts"
 
const promptTemplate = PromptTemplate.fromTemplate(
    prompt.getLangchainPrompt()
  ).withConfig({
    metadata: { langfusePrompt: prompt }
  });

Setup Langfuse Tracing for Langchain JS

We’ll use the native Langfuse Tracing for Langchain JS when executing this chain. This is fully optional and can be used independently from Prompt Management.

import { CallbackHandler } from "npm:langfuse-langchain"
const langfuseLangchainHandler = new CallbackHandler(langfuseParams)

Create chain

We use the modelName and temperature stored in prompt.config.

import { ChatOpenAI } from "npm:@langchain/openai"
import { RunnableSequence } from "npm:@langchain/core/runnables";
 
const model = new ChatOpenAI({
    modelName: prompt.config.modelName,
    temperature: prompt.config.temperature
});
const chain = RunnableSequence.from([promptTemplate, model]);

Invoke chain

const res = await chain.invoke(
    { topic: "Europe and the Americas" },
    { callbacks: [langfuseLangchainHandler] }
);

View trace in Langfuse

As we passed the langfuse callback handler, we can explore the execution trace in Langfuse.

Trace in Langfuse

OpenAI functions and JsonOutputFunctionsParser

Add prompt to Langfuse

const prompt =  await langfuse.createPrompt({
    name: "extractor",
    prompt: "Extracts fields from the input.",
    config: {
      modelName: "gpt-4",
      temperature: 0,
      schema: {
        type: "object",
        properties: {
          tone: {
            type: "string",
            enum: ["positive", "negative"],
            description: "The overall tone of the input",
          },
          word_count: {
            type: "number",
            description: "The number of words in the input",
          },
          chat_response: {
            type: "string",
            description: "A response to the human's input",
          },
        },
        required: ["tone", "word_count", "chat_response"],
      }
    }, // optionally, add configs (e.g. model parameters or model tools)
    labels: ["production"] // directly promote to production
});

Prompt in Langfuse

Prompt in Langfuse

Fetch prompt

const extractorPrompt = await langfuse.getPrompt("extractor")

Transform into schema

const extractionFunctionSchema = {
    name: "extractor",
    description: prompt.prompt,
    parameters: prompt.config.schema,
}

Build chain

import { ChatOpenAI } from "npm:@langchain/openai";
import { JsonOutputFunctionsParser } from "npm:langchain/output_parsers";
 
// Instantiate the parser
const parser = new JsonOutputFunctionsParser();
 
// Instantiate the ChatOpenAI class
const model = new ChatOpenAI({ 
    modelName: prompt.config.modelName,
    temperature: prompt.config.temperature
});
 
// Create a new runnable, bind the function to the model, and pipe the output through the parser
const runnable = model
  .bind({
    functions: [extractionFunctionSchema],
    function_call: { name: "extractor" },
  })
  .pipe(parser);

Invoke chain

import { HumanMessage } from "npm:@langchain/core/messages";
 
// Invoke the runnable with an input
const result = await runnable.invoke(
    [new HumanMessage("What a beautiful day!")],
    { callbacks: [langfuseLangchainHandler] }
);

View trace in Langfuse

Trace in Langfuse

Was this page useful?

Questions? We're here to help

Subscribe to updates